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Abstract. We calculate the electronic states of AlxGa1−xAs/GaAs/Al xGa1−xAs double hetero-
junctions subjected to a magnetic field parallel to the quasi-two-dimensional electron gas layer.
We study the energy dispersion curves, the density of states, the electron concentration and the
distribution of the electrons in the subbands.

The parallel magnetic field induces severe changes in the density of states, which are of crucial
importance for the explanation of the magnetoconductivity in these structures. However, to our
knowledge, there has been no systematic study of the density of states under these circumstances.
We attempt a contribution in this direction.

For symmetric heterostructures, the depopulation of the higher subbands, the transition from
a single-layer to a bilayer electron system and the domination of the bulk Landau levels in the
centre of the wide quantum well, as the magnetic field is continuously increased, are presented
in the ‘energy dispersion picture’ as well as in the ‘electron concentration picture’ and in the
‘density-of-states picture’.

1. Introduction

Although the behaviour of the quasi-two-dimensional electron gas (Q2DEG) in the presence
of a perpendicular magnetic field has been studied extensively, much less attention has been
devoted to the situation where the magnetic field is applied parallel to the Q2DEG layer. In the
former case, interesting phenomena, e.g. the Shubnikov–de Haas effect [1] and the integer [2]
and the fractional [3] quantum Hall effects, have been observed. In the latter case, electrons
move under the competing influence of the Lorentz force and the force due to the quantum
well confining potential.

In the presence of an in-plane magnetic field,EB, single heterojunctions [4–6], single [7,8],
double [8–12] and triple [13] square quantum wells, almost square quantum wells [14, 15],
asymmetric square quantum wells [16], symmetrical wide single quantum wells [17, 18] and
superlattices [19] have been considered.

The experimental studies include ones of single heterojunctions [6], double square
quantum wells [10–12], triple square quantum wells [13], wide single quantum wells [18] and
superlattices [19]. The most important experimental finding [10,12,13,18] is, in our opinion,
the strong conductance ‘oscillations’ due to the variation of the density of states (DOS), asB is
increased. Conductance maxima are identified with depopulations of local energy dispersion
minima, while conductance minima are identified with van Hove singularities at the chemical
potential. This situation has been encountered for symmetrical square double [10, 12] and
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triple [13] quantum wells and for symmetrical wide single quantum wells [18]. While in the
cases of square double and triple quantum wells a simple tight-binding calculation gave the
position of the maxima and the minima, a self-consistent calculation was necessary in the case
of symmetrical wide single quantum wells.

Theoretical studies of the electronic states are usually restricted to simple analytically
solvable potential wells, to tight-binding approximation, or to perturbative approximations.
Self-consistent studies have been few, and they have focused on single heterojunctions [4,5],
thin single quantum wells [14] and symmetrical wide single quantum wells [17].

In the present work, we study the AlxGa1−xAs/GaAs/AlxGa1−xAs wide double hetero-
junction (i.e. a system of two heterojunctions with a relatively large distance between the two
interfaces) subjected to an in-plane magnetic field using self-consistent calculations. Below,
we summarize the particular aims of this work.

Our first aim is to study the density of states when the Q2DEG is subjected to an in-plane
magnetic field. In this case, the DOS is not a step-like function, as it is withB = 0. We
show that its form undergoes important changes asB is increased, especially in wide double
heterojunctions where usually many subbands are present [20, 21]. The self-consistent study
of the electronic states and specifically of the DOS is of great importance for the explanation of
the experimental magnetoconductivity in these structures. However, up to now, there has been
no systematic study of the DOS under these circumstances. We attempt to give a contribution
in this direction.

Our second aim is to study a bilayer electron system, different from the commonly used
symmetrical double square well. Another potentially bilayer electron system is the symmetrical
double heterojunction, when the well width is increased a lot, due to the transition from
a ‘perfect’ square quantum well to a system of two separated heterojunctions [20]. In the
former structure a high barrier separates the two electron layers. In the latter structure the
barrier is formed from the redistribution of the carriers in the well and it is relatively weak.
Moreover, Smr̆cka and Jungwirth [17] have shown, by calculating the energy dispersion curves
in a two-subband situation, that symmetrical wide single quantum wells can be potentially
bilayer electron systems when the parallel magnetic field is increased. Here, we present the
depopulations of the higher subbands and the transition from a single-layer to a bilayer electron
system not only in the ‘energy dispersion picture’, but also in the ‘electron concentration
picture’. Thus, we calculate the electron concentration,n(z), and the distribution of the
electrons in the subbands,ni(z). We also give the ‘density-of-states’ picture, which is
important for the interpretation of the transport experiments. Moreover, we show in these
three pictures that in the centre of our wide quantum well, as the magnetic field is further
increased, the bulk Landau levels dominate. Finally, we give an example of an asymmetric
heterostructure.

The basic theory is presented in section 2 together with some analogies with the classical
picture. In section 3 we present the theoretical results for the AlxGa1−xAs/GaAs/AlxGa1−xAs
double heterojunctions and we comment on some interesting features observed. Our conc-
lusions are summarized in section 4.

2. Basic theory

When a magnetic field,EB, parallel to they-axis, is applied to a three-dimensional electron
gas, the motion in thexz-plane is quantized into Landau levels with energy eigenvalues
Exz = h̄ω(i + 1

2), wherei is a discrete quantum number, ¯h is the reduced Planck constant and
ω = eB/m∗ is the cyclotron frequency.m∗ is the effective mass andq = −e is the electron
charge. If we additionally apply an electric field,EE, along thez-axis, thenExz depends not
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only oni, but also on the wavevector along thex-axis,kx . Specifically,

Exz = h̄ω
(
i +

1

2

)
− m

∗

2

(
E

B

)2

− h̄kx
(
E

B

)
.

In this work we are interested in the configuration with a quantum well along thez-axis (with
or without an electric field applied along thez-axis) and the magnetic field applied along they-
axis. Again, as we discuss below,Exz depends on bothi andkx . However, generally in this case
Exz = Ei(kx) cannot be expressed analytically and has to be determined self-consistently. Of
course, without a magnetic field,Exz = Ei + h̄2k2

x/(2m
∗), where nowi is the subband index.

In all of the situations described above, they-axis energy eigenvalue isEy = h̄2k2
y/(2m

∗),
whereky is they-axis wavevector. The spin part of the eigenenergy isEspin = ± 1

2g
∗µBB,

whereg∗ is the effective Land́e factor andµB is the Bohr magneton.
Summarizing, in the present configuration, there is a magnetic field applied along the

y-axis, a quantum well along thez-axis and possibly an electric field applied along thez-axis
(e.g. an external field due to a gate). With our choice of axes, the Hamiltonian is

Ĥtot = ( Ep − q EA)2/(2m∗) +U(z) + g∗µB Eσ · EB (1)

where Ep is the momentum operator,EA is the vector potential,m∗ = 0.067me is the GaAs
effective mass,me is the electron mass,Eσ is the spin andEB is the parallel magnetic field. Also,

U(z) = Uband off set (z) +UC(z) +UXC(z) +UE(z) (2)

whereUband off set (z) is the potential energy term due to the discontinuities of the conduction
band minimum,UC(z) is the Coulombic potential energy,UXC(z) is the exchange and
correlation potential energy [20] andUE(z) is the potential energy due to an electric field
applied in thez-axis direction, e.g. due to a gate. The magnetic field is applied along the
y-axis, i.e. EB = (0, B,0). For the vector potential we chooseEA = (Bz, 0, 0) [22]. The
Hamiltonian becomes

Ĥtot = (p̂x − qBẑ)2/(2m∗) + p̂2
y/(2m

∗) + p̂2
z /(2m

∗) +U(z) + g∗µB Eσ · EB. (3)

We split the spatial and the spin parts.9(Er, Eσ) = ψ(Er)α(Eσ) andEtot = Exyz± 1
2g
∗µBB. For

the spatial part the envelope function equation is

[(p̂x − qBẑ)2/(2m∗) + p̂2
y/(2m

∗) + p̂2
z /(2m

∗) +U(z)]ψ = Exyzψ. (4)

[p̂x, Ĥ ] = [p̂y, Ĥ ] = 0. Thus, we look for solutions in the formψ = (1/√S)ζ(z)eikxxeikyy ,
whereS = LxLy is the area of the heterostructure in thexy-plane. The coordinatey splits
from the coordinatesx andz. We haveEy = h̄2k2

y/(2m
∗), while in thexz-plane

d2ζ(z)

dz2
+

2m∗

h̄2

[
Exz − m

∗

2

(
eB

m∗

)2(
z +

h̄kx

eB

)2

− U(z)
]
ζ(z) = 0. (5)

The non-magnetic part of the potential energy isU(z), while the magnetic part of the potential
energy is

m∗

2

(
eB

m∗

)2(
z +

h̄kx

eB

)2

.

The centre of the magnetic potential energy is at the point

z0 = − h̄kx
eB
= − h̄kx

m∗ω
.

Thus, the electron is free in they-axis direction, but the magnetic field correlates the motion
along thex-axis with that along thez-axis. The motion in thexz-plane is characterized by a
running wave eikxx and the bound stateζi,kx (z) which depends on bothi andkx .
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The energy eigenvalues are

Etot = Exz +Ey ± 1

2
g∗µBB = Ei(kx) +

h̄2k2
y

2m∗
± 1

2
g∗µBB (6)

where, generally,Ei(kx) 6= Ei(−kx).
The density of states is

n(E) =
∑

i,kx ,ky ,σ

δ(E − Ei,kx ,ky ,σ ) =
∑
i,kx

ni,kx (E) (7)

where

ni,kx (E) =
∑
ky ,σ

δ(E − Ei,kx ,ky ,σ ) = 2
∑
ky

δ

(
E − Ei,kx −

h̄2k2
y

2m∗

)
. (8)

We have used the notationEi,kx ≡ Ei(kx). Integrating overky , equation (8) is

ni,kx (E) = 2
Ly
√

2m∗

4πh̄

1√
E − Ei,kx

2(E − Ei,kx ) (9)

where2 is the step function. We must note here that the DOS is not a step-like function, as it
is with zero magnetic field.

The electron concentration is

n(Er) =
∑
i,kx

ni,kx (Er) (10)

where

ni,kx (Er) =
∫ +∞

−∞
dE ni,kx (E)f0(E)|ψi,kx (Er)|2. (11)

f0(E) is the Fermi–Dirac distribution function andψi,kx (Er) is the three-dimensional envelope
function. Thus, at finite temperature,T ,

ni,kx (Er) = 2

√
2m∗

4πh̄Lx
|ζi,kx (z)|2

∫ +∞

0
dα

1√
α

[
1 + exp

(
α +Ei,kx − µ(T )

kBT

)]−1

(12)

whereµ(T ) is the chemical potential andkB is the Boltzmann constant. Using equation (12),
equation (10) becomes

n(z) =
∑
i

ni(z) =
∑
i

√
2m∗

h̄2

1

(2π)2

×
∫ +∞

−∞
dkx |ζi,kx (z)|2

∫ +∞

0
dα

1√
α

[
1 + exp

(
α +Ei,kx − µ(T )

kBT

)]−1

. (13)

Therefore, the sheet electron concentration is

Ns =
∑
i

Ni =
∑
i

√
2m∗

h̄2

1

(2π)2

∫ +∞

−∞
dkx

∫ +∞

0
dα

1√
α

[
1 + exp

(
α +Ei,kx − µ(T )

kBT

)]−1

.

(14)

For a Hamiltonian like that of equation (1),m∗Ev = Ep − q EA [22], which in our case
becomesm∗v̂x = p̂x + eBẑ, m∗v̂y = p̂y andm∗v̂z = p̂z. Thus, after a little algebra we
obtain for the acceleration and the force operators along thex-, y- andz-axes, respectively:
âx = +ωv̂z, F̂x = +m∗ωv̂z; ây = 0, F̂y = 0; and âz = −ωv̂x − (1/m∗)∂U(ẑ)/∂ẑ,
F̂z = −m∗ωv̂x − ∂U(ẑ)/∂ẑ. So, along they-axis there is no force on the electrons, along
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thex-axis there is only the Lorentz force, while along thez-axis there is, in addition to the
Lorentz force, the force due to the quantum well confining potential.

When there is no quantum well (U(z) = 0) the quantities

ẑ0 = − p̂x
eB

which correspond to thez-coordinate of the centre of the classical cyclic orbit and

x̂0 = p̂z

eB
+ x̂

which corresponds to thex-coordinate of the centre of the classical cyclic orbit are constants
of the motion. WhenU(z) = 0, the quantity

r̂2
c =

(p̂x + eBẑ)2 + p̂2
z

m∗2ω2

which corresponds to the square of the radius of the classical cyclic orbit is also a constant
of the motion. Thus, whenU(z) can be ignored, the electrons describe the well-known spiral
motion.

The algorithm used to solve the above equations self-consistently is divided into the
following steps.

(α′) We input an initial guess for the non-magnetic potential energy,Uin(z).
(β ′) We solve the envelope function equation (5) for eachi and for eachkx to obtainζi,kx (z)

andEi,kx . Care should be taken in this step to include all possiblei and all possiblekx
which contribute to the electron concentration. Thus, we start with many subbands and
with a wide range ofkx . This means that equation (5) must be solvedmanytimes.

(γ ′) µ(T ) can be calculated from charge neutrality [20,21], using equation (14).
(δ′) Thus, we can calculate, from equation (13),n(z) andni(z) and thereforeUXC(z) [20].
(ε′) Now the charge density is known and it is used to solve the Poisson equation numerically

[20], to obtainUC(z). We suppose that dUC/dz(bulk) = 0, because there is no net
charge in the bulk material. We take into account the different dielectric constants of
GaAs and AlxGa1−xAs [20]. Finally, we chooseUC(left bulk) = −U0, whereU0 is the
value of the discontinuity of the conduction band minimum.UXC(bulk) = 0, because
the envelope functions decay into the AlxGa1−xAs barriers. Thus,U(left bulk) = 0. All
of the structures are long enough along thez-axis that bulk conditions prevail before the
ends of the AlxGa1−xAs barriers are reached.

(ς ′) The output non-magnetic potential energy,Uout (z), can now be calculated from equ-
ation (2).

(ζ ′) If Uout (z) is ‘very close’ toUin(z), we have finished. Otherwise, we mixUout (z) and
Uin(z) to construct the newUin(z) and we return to step (β ′) [20].

Finally, we notice that since the envelope functions depend on bothi andkx , a quantitative
calculation of the conductivity will involve tedious algebra, because the scattering matrix
elements will depend onkx , too. This complication emerges also in the calculation of
the screening. For this reason, although some attempts at obtaining one have already been
made [23], a well established transport theory for a Q2DEG with an in-plane magnetic field
has not been developed yet.

3. Results and discussion

We apply our treatment to the case of a symmetricalδ-doped AlxGa1−xAs/GaAs/AlxGa1−xAs
double heterojunction, in the presence of a parallel magnetic field, ranging from 0 T up to
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20 T. We choose a symmetrical structure because in this case we can observe most clearly
the variation of the electronic states induced by the magnetic field in the ‘energy dispersion
picture’, in the ‘electron concentration picture’ and in the ‘density-of-states picture’. The
structure consists of a 280 Å undoped Al0.25Ga0.75As layer, a Siδ-doped Al0.25Ga0.75As layer
(0.28×1012 cm−2), an undoped 250 Å Al0.25Ga0.75As spacer, a 600 Å undoped GaAs well, an
undoped 250 Å Al0.25Ga0.75As spacer, a Siδ-doped Al0.25Ga0.75As layer (0.28× 1012 cm−2)
and a 280 Å undoped Al0.25Ga0.75As layer. All layers are assumed to have slight unintentional
acceptor doping of 1× 1015 cm−3. We suppose that the sample has been illuminated and that
therefore all of the donors are ionized. This is done because we want to study the effect of
the magnetic field under the condition of constant sheet electron concentration. Although our
treatment is applicable to any temperature, we will apply it toT = 4.2 K. This is done because
the experiments are usually performed at or belowT = 4.2 K. These material and structural
parameters result in a sheet electron concentration ofNs = 0.54× 1012 cm−2.

First we will describe the evolution of the changes induced by the magnetic field to the
energy dispersion curves,Ei(kx). The situation is displayed in the lower parts of figure 1.
In this particular structure, forB = 0, due to the large well width, the ground-state subband
and the first and second excited subbands are populated, with sheet electron concentrations
of N0 = 0.238× 1012 cm−2, N1 = 0.233× 1012 cm−2 andN2 = 0.069× 1012 cm−2,
respectively. Initially, as the magnetic field is increased, depopulation of the higher subbands
is predicted. The second excited subband is depopulated atB ' 5 T and the first excited
subband atB ' 7 T. On increasing the magnetic field up to 7 T, the shapes of theEi(kx)

d)c)

b)a)
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Figure 1. Symmetric heterostructure. The energy dispersion curves,Ei(kx), i = 0, 1, 2, 3 (lower
parts), and the densities of states (upper parts) drawn with a common horizontal energy axis for
(a)B = 1 T, (b)B = 7 T, (c)B = 12 T and (d)B = 20 T. The DOS is in arbitrary units. The
chemical potential is identified with the zero energy. The dashed curves represent the DOS of each
of the subbands,ni(E), while the bold continuous curves represent the total DOS,n(E).
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dispersion curves also change. While the upper subbands remain almost parabolic, the first
excited subband and, most obviously, the ground-state subband undergo important changes,
gradually developing local maxima atkx = 0 instead of local minima atB = 0 T. As can be
seen from the lower parts of figure 1, this also happens to the other excited subbands for larger
values of the magnetic field. ForB > 7 T, only the ground-state subband is populated. At this
point theE0(kx) dispersion curve is continuously below the chemical potential in the range
kx = [−4× 108,+4× 108] m−1. This means that the system is still a single-layer one.

At higher magnetic fields, a transition from a single-layer to a bilayer electron system
occurs. This transition has approximately been achieved atB = 12 T as can be seen from the
lower part of figure 1(c), but the complete separation of the two layers is achieved atB = 20 T
(see figure 2 where the electron concentrations are presented). During this procedure, the
energy separation of the unoccupied states (those with small|kx |) becomes ¯hω. This is due
to the fact that the well width is very large and therefore in the central region of the well, as
the magnetic confinement overcomes the well confinement, the bulk Landau levels dominate.
This has also been predicted for square, analytically solvable, quantum wells when the well
width is large enough [16].

In the case of a square quantum well, the behaviour of theEi(kx) curves is determined by
the competition of thewell widthand themagnetic length[16]:

lB = √[h̄/(eB)].

When the well width is smaller than the magnetic length, spatial quantization dominates. The
energy levels can be roughly classified into two types, namelyconfinedstates andextended
states. In thisspecific casethe confined states in the quantum well increase parabolically as
a function ofkx [7, 14], while the extended states have an oscillating form with an ‘average’
separation of ¯hω [7]. However, as the well width or the magnetic field is increased, this
behaviour changes. Finally, when the well width is larger than the magnetic length, the electron
orbits are governed by the Lorentz force and electrons basically describe spiral motion. At
this point the energy dispersion curves are flat with a separation of ¯hω.

In reference [14], the author, studying thin single quantum wells and taking as the growth
axis thez-axis and the magnetic field along thex-axis, bypasses the dependence of the electronic
states on the in-plane wavevector along they-axis (perpendicular toEB), using onlyky = 0.
This is done in order to reduce the large numerical cost of the general case. It is evident from
the lower parts of figure 1 that such an approximation cannot be applied in our case because of
the strong dependence of the electronic states on this wavevector. Moreover, for high enough
values of the magnetic field, the states with this wavevector are not occupied.

The ‘density-of-states picture’ is given in the upper parts of figure 1. We observe that
although forB = 1 T (figure 1(a)) the DOS is almost step-like, there is already a peak due
to the fact thatE0(kx) has already developed a local maximum atkx = 0, instead of the local
minimum atB = 0 T. This corresponds to a van Hove singularity, since dE0(kx)/dkx > 0 as
we approach the critical point from below and dE0(kx)/dkx < 0 as we approach the critical
point from above. The DOS of the first excited subband is not a ‘perfect step’, becauseE1(kx)

is not exactly parabolic. The densities of states for the second and the third excited subbands
are ‘perfect steps’, becauseE2(kx) andE3(kx) are parabolic. We can also see that we have
three populated subbands.

In the upper part of figure 1(b) we present the DOS forB = 7 T. Clearly, we can observe
the depopulation of the first excited subband. Therefore, at this point, as we increase the
magnetic field, the conductivity of the structure increases abruptly, due to the abrupt decrease
of the DOS at the chemical potential. We also observe that the total DOS is not step-like
and that the second and the third excited subbands are not exactly parabolic. Moreover, since
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Figure 2. Symmetric heterostructure. The electron concentration,n(z) (bold continuous curves),
and the population of the subbands,ni(z) (dotted curves), for (a)B = 1 T, (b)B = 4 T, (c)B = 6 T,
(d)B = 7 T, (e)B = 12 T and (f )B = 20 T.

E0(kx) andE1(kx) have developed local maxima atkx = 0, there are two peaks in the DOS,
corresponding to the two van Hove singularities.

In the upper part of figure 1(c) we present the DOS forB = 12 T. There is a van Hove
singularity at the chemical potential, due to the local maximum ofE0(kx) atkx = 0. Therefore,
at this point, as we increase the magnetic field, the conductivity of the structure decreases
abruptly due to the abrupt increase of the DOS at the chemical potential. The total DOS
indicates that at the centre of the well the bulk Landau levels start to develop. AllEi(kx) have
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already developed local maxima atkx = 0 and the energy separation of successive subbands
for small|kx | is close toh̄ω.

In the upper part of figure 1(d) we present the DOS forB = 20 T. The form of the total
DOS stems from the combination of two factors, i.e. as we move along the energy axis to
higher energies:

(a) From the two local minima ofEi(kx) up to the local maximum ofEi(kx) the bilayer
electron system dominates.

(b) From the local maximum ofEi(kx) up to the local minima ofEi+1(kx), the bulk Landau
levels dominate. In this region the DOS has the form

constant×
∑
i

(
E − h̄ω

(
i +

1

2

))−1/2

= constant′ ×
∑
i,ky

δ

(
E − h̄ω

(
i +

1

2

)
− h̄

2k2
y

2m∗

)
which is the DOS of a free particle on they-axis together with a harmonic oscillator in
thexz-plane. The energy separation of successive subbands for small|kx | is equal toh̄ω.

Figure 2 presents the variation of the electron concentration,n(z), and of the population
of the subbands,ni(z), as we increase the magnetic field from 0 T to 20 T. Thedepopulation
of the second excited subband atB ' 5 T and of the first excited subband atB ' 7 T can also
be seen in this ‘electron concentration picture’. Inspection of figure 2 reveals that, in addition
to these depopulations, the form ofn(z) changes even from 1 T to 7 T,with a slightly bigger
separation of the two parts ofn(z). This separation increases with the increase of the magnetic
field. At 12 T there are still electrons in the middle of the well. The division into two parts
is complete at 20 T. This means that the ‘electron concentration picture’ gives a more precise
depiction of the transition to a bilayer system than the ‘energy dispersion picture’.

We finally give an example of an asymmetric heterostructure. The structure consists of a
700 Å undoped Al0.25Ga0.75As layer, a 50 Å Si-doped Al0.25Ga0.75As layer (2× 1018 cm−3),
an undoped 50 Å Al0.25Ga0.75As spacer, a 600 Å undoped GaAs well, an undoped 200 Å
Al0.25Ga0.75As spacer, a 50 Å Si-doped Al0.25Ga0.75As layer (1× 1018 cm−3) and a 600 Å
undoped Al0.25Ga0.75As layer. We suppose, again, that all of the layers have slight unintent-
ional acceptor doping of 4× 1014 cm−3 and that the sample has been illuminated with the
result that all of the donors are ionized.T = 4.2 K. These material and structural parameters
result in a sheet electron concentration ofNs = 1.491× 1012 cm−2. For B = 0 T, there
are four populated subbands with sheet electron concentrations ofN0 = 0.742× 1012 cm−2,
N1 = 0.406×1012 cm−2,N2 = 0.229×1012 cm−2 andN3 = 0.114×1012 cm−2, respectively.

In figure 3 we present the energy dispersion curves,Ei(kx) (lower part), and the densities
of states (upper part) forB = 5 T. We notice that for this asymmetric heterostructure
Ei(kx) 6= Ei(−kx). The populations of the subbands are nowN0 = 1.042× 1012 cm−2,
N1 = 0.324× 1012 cm−2, N2 = 0.110× 1012 cm−2 andN3 = 0.015× 1012 cm−2, respect-
ively. We can observe the ‘transposition and the anticrossings of the parabolas’ which result
in a complicated form for the DOS. We can also see that there are two different van Hove
singularities which give the peaks in the DOS.

Generally, both in the symmetrical and in the asymmetrical case, the van Hove singular-
ities are not simply saddle points, because theEi(kx), as we approach the critical points, are
not of the form−αk2

x , α >0. The exact form of the dispersion curves is obtained from the
self-consistent calculation. Anyway, as we increase the magnetic field, whenever the chemical
potential is identified with a van Hove singularity, the conductivity of the structure will decrease
abruptly. In contrast, whenever there is a depopulation of a local energy dispersion minimum,
due to the decrease of the DOS at the chemical potential, the conductivity will increase abruptly.
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Figure 3. Asymmetric heterostructure. The energy dispersion curves,Ei(kx), i = 0, 1, 2, 3 (lower
part), and the densities of states (upper part) drawn with a common horizontal energy axis for
B = 5 T. The DOS is in arbitrary units. The chemical potential is identified with the zero energy.
The dashed curves represent the DOS of each of the subbandsni(E), while the bold continuous
curves represent the total DOS,n(E).

Similar results are obtained for other values of the well width. It is the competition between
the magnitude of the magnetic field and the spatial quantization—together with the influence
of the number of electrons—that determines the overall behaviour of the system. Extensive
comparison with experiment will be presented in a forthcoming paper [24].

4. Summary

Here we have self-consistently calculated the energy dispersion curves, the density of
states, the electron concentration and the distribution of the electrons in the subbands for
Al xGa1−xAs/GaAs/AlxGa1−xAs double heterojunctions subjected to an in-plane magnetic
field.

We have systematically studied the important changes in the density of states, induced
by the variation of the in-plane magnetic field. We have pointed out that these changes are of
crucial importance for the explanation of the magnetoconductivity experiments.

In the case of symmetric heterostructures, we have demonstrated in the ‘energy dispersion
picture’, in the ‘electron concentration picture’ and in the ‘density-of-states picture’ the
depopulation of the higher subbands, the transition from a single-layer to a bilayer electron
system and the domination of the bulk Landau levels in the centre the wide quantum well, as
the magnetic field is continuously increased. We have also given an example of an asymmetric
heterostructure.
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